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The representation theory of symmetry groups, together with variational and functional-topological methods, are used in a two- 
dimensional formulation to investigate the waveguide properties of one-dimensionally periodic surfaces (OPS) and interfaces. 
It is established that all surfaces on which the Neumann condition is satisfied possess the waveguide property--they are open 
waveguides. This means that there are waves localized in the neighbourhood of the surface which propagate along it without 
attenuation--waveguide modes. It is shown that for any hard OPS there is always a transmission band of waveguide frequencies, 
localized in the neighbourhood of zero---the whispering surface effect. Anomalous oscillations localized around OPSs on which 
the Neumann condition is satisfied are observed and investigated. Examples of surfaces for which anomalous o~illations exist 
and others for which none exist are presented, it is proved that OPSs on which the Dirichlet condition holds do not have a 
transmission band for waveguide frequencies in the neighbourhood of zero, and for some frequency bands they do not have 
waveguide and anomalous properties. It is shown that one-dimensionally periodic interfaces of two media possess waveguide 
and anomalous properties, provided that the parameters satisfy certain relationships. It is established that if the interface has 
the waveguide property, then transmission band of frequencies will always exist localized in the neighbourhood of zero---the 
whispering interface effect. An example is presented in which anomalous oscillations are investigated, dispersion relations are 
derived and pass and stop bands for waveguide modes are determined. © 2000 Elsevier Science Ltd. All rights reserved. 

The investigation of the propagation of waves localized about one-dimensionally periodic surfaces 
is of interest in acoustics, water wave theory, electrodynamics, optics and other fields, since they 
describe the waveguide, anomalous, whispering and resonance properties of a structure. Such an 
investigation is difficult, however, as these properties are described by generalized eigenfunctions, and 
it is therefore necessary to investigate the fine structure of the continuous spectrum of the appropriate 
operator. 

Below, continuing the investigations carried out in [1-3], we will consider waveguide, anomalous and 
whispering properties of one-dimensionally periodic permeable and impermeable surfaces. 

1. F O R M U L A T I O N  A N D  S Y M M E T R Y  P R O P E R T I E S  O F  T H E  P R O B L E M S  

Throughout this paper, the spatial variables will be non-dimensionalized relative to the minimum 
period of a one-dimensionally periodic surface (OPS). The problems are two-dimensional, the 
independent variables (x, y) ~ R 2 are Cartesian, and the direction of spatial periodicity coincides with 
that of the ordinate axis. A surface or interface is described by a periodic connected curve G which 
divides R 2 into two connected parts, O1 w [)2 k.) G = R 2 (Fig. 1). The domain f~t(t)2) is filled by a medium 
all of whose parameters are labelled with subscript 1(2). Dirichlet and Neumann problems will be 
investigated in the domain f~ = f~2, in which case the subscripts will be omitted. All problems will be 
investigated with the oscillation domain restricted to some fundamental domain of the translation group 
O F. No new notation will be introduced for the restrictions of ~, O 1, t)2, G to O r. 

Equations and boundary conditions. If a solution of the wave equation is sought in the form 
u(x, y, t) = u(x, y)exp(-itot), then u(x, y) describes steady oscillations and 

(A + ~?)u = 0 (1.1) 

where A is the Laplacian, X = to/c is the dimensionless oscillation frequency, c is the velocity of 
propagation of the waves in the oscillation domain and to is the angular frequency of the oscillations. 
It should be noted that the Helmholtz equation (1.1) may be obtained from the wave equation by other 
means, e.g. by Laplace or Fourier transformations. The meaning of the function u(x,y) and the conditions 
of its behaviour on G are determined by the physical content of the problem under investigation. 
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Fig. 1. 

The surface G is said to be soft if 

u(x, Y)Ia = 0 (1.2) 

Problem (1.1), (1.2) will be referred to henceforth as problem D. 
Let n(x, y) be the vector of the normal to G at a point (x, y) ~ G. The surface G is said to be hard if 

3u/3nla = 0 (1.3) 

Problem (1.1), (1.3) will be referred to as problem N. 
If G is the interface of the two media filling f~l and f22, steady oscillations in these domains are 

described by the relations 

(A + ~,2X2)U I -- 0 in ~ t ,  (A + ~2)u 2 = 0 in ~2  (1.4) 

where × = c2/cl is the ratio o f the  wave propagation velocities c 2 and cl in the respective media, co is 
the angular frequency of the oscillations and )~ = 0~/c2 is the dimensionless oscillation frequency. The 
following transmission conditions must hold at the interface 

ut IG=u~ IG, Dul I Dn l~= xDuz l ~n lo (1.5) 

The specification x > 0 depends on the physical content of the problem. For example, if one is 
investigating the interface properties for acoustic waves and the unknown function is the acoustic 
pressure, x = 91/92 is the density ratio of the media. 

Problem (1.4), (1.5) will henceforth be referred to as problem T. For convenience it will be assumed 
that × > 1 and x ,~ 1. This is true, for example, if G is an interface between air and water (a water 
wave). 

Symmetry properties. Since the Laplacian is invariant with respect to any locally-plane symmetries, 
the symmetry of problems D, N and T is determined by the shape of the surface G. All the OPSs 
can be classified by their groups of admissible symmetries. Only two types of such surfaces are possible 
[4, 5]. The first type is a surface that admits of only the translation group {TI }, Tl((X, y)) = (x, y + 1). 
The second type is that admitting of the group {Ti,/Yl }; D~((x, y)) = (x, -y)--mirror  reflection in the 
abscissa axis. No OPSs exist that admit of other symmetry groups [4, 5]. An example of a surface of 
the second type is shown in Fig. 1. 

Transformations in the symmetry group SG of the surface G map a solution of problem D, N or T 
into a solution of the same problem. Therefore, the space of admissible solutions of any of these problems 
is the sum of invariant subspaces with respect to an irreducible representation of SG in the solution 
space. We may thus replace the space of admissible solutions of problem D, N or T by one of these 
subspaces, simplifying the investigation. 

Our most important task is to investigate boundary-value problems in solution spaces which are 
invariant with respect to irreducible representations of the group { T1 }. The space of admissible solutions 
of any homogeneous problem for the wave equation with boundary conditions on an OPS is the sum 
of subspaces which are invariant with reslbect to an irreducible representation of the group {Ti }. If a 
function u(x, y) belongs to such a subspace, then for some ~, -n  ~< ~ ~< n 

T l (u(x, y)) = u(x, y + 1) = e'r;u(x, y) (1.6) 



The whispering surface effect 865 

The quantity ~ describes the phase shift of the oscillations in adjoining fundamental domains of the 
translation group. In what follows, unless otherwise stated, it is assumed that 0 < ~ ~< ft. 

Condition (1.6) means that oscillations in adjoining fundamental domains of the translation group 
occur with a phase shift ~. The general solution of problem D, N or T is a superposition of solutions 
of type (1.6) with respect to ~. 

The following proposition may be verified by a direct check. 

Lemma 1.1. If a function u(x, y) satisfies condition (1.6), then in free space 

u(x,y) --- e~Vv (x,y), o (x ,y+ 1) ~v (x,y) (1.7) 

Identity (1.7) is sometimes referred to as Floquet's theorem, or as Rayleigh-Bloch waves, and (1.6) 
as the phase shift condition for oscillations in adjoining fundamental domains of the translation group. 

In the case of a surface G of the second type, there are four possible one-dimensional irreducible 
representations of the group SG = {Tl, D~} in the space of admissible solutions of problem D, N 
or T [6] 

{xl(Tt) =-I, xt(O:)= +11, Ix2 (T0 = -I, ~2(D~') = -I} .8) 
{1:3(TI) = +l,~3(Dl x) =+I}, {'c4(T I ) = +I,'~4(D:) = -I} 

~k(k = 1 . . . . .  4) are. irreducible representations of the group {TI, D~}. 
Problems D, N and Twith the additional condition (1.7) are known as problems D(~), N(~) and T(~). 

The self-adjoint extensions of the Laplacian for D(~) and N(~) will be denoted by -A~-D and -A~°N, 
respectively. We will consider self-adjoint extensions of the Laplacian in the space L2(f~) and the 
corresponding self-adjoint restrictions of this extension [7]. 

Waveguide, anomalous and whispering properties. At the physical level of rigor, a surface possesses 
the waveguide proper.ty if travelling waves exist localized in its neighbourhood that propagate along it 
without attenuation (waveguide modes); it has the anomalous property if waves exist localized in 
its neighbourhood which are in phase in all fundamental domains of the translation group; and it has 
the whispering property if a transmission band exists for waveguide mode frequencies in the 
neighbourhood of zero. For the subsequent discussion we have to formalize the terminology. 

Definition 1.1. A waveguide function of problem D, N or T is a generalized eigenfunction of problem 
D(~), N(~) or T(~), 0 < I ~ I ~< rc localized in the neighbourhood of an OPS. The corresponding oscillation 
frequency is called a waveguide frequency. A hard or soft OPS or interface has the waveguide property 
if a non-trivial waveguide function exists corresponding to problem D, N or T. 

The general solution of equations (1.1) or (1.4) with condition (1.6) in f~k(k = 1, 2) for Ix i >> 1 has 
the form 

uk (x, y) = 5". expt i (2 . .  + ~)y]tb~.*,~) expO x I I~t,,,k)) + btt~!k) exp(- I x I I~t,,.k))], k = 1,2 
l i  oo 

= 4 ( 2 . .  + - 2 . = 4 i 2 . .  + _ 

Therefore, a function u*(x, y) is localized about G if and only if 
+ao 

ui(x ,y)= ~, ~,(±) o0~,k ) exp[ i (2"  + ~)y] exp(- I x I I](,,k )), k = 1, 2 ( 1.9) 

and Re(13~n,g~) > 0 (k = 1, 2) for all non-trivial terms. 

Remark 1.1. Suppose that for some ~.,, 0 < ~., < ~, an eigenfunction of probtem D(~), N(~) or T(~) exists which, 
for Ix I >> 1, has the form (1.9), Re([3(,,:,) ) > 0 (k = 1, 2); then this eigenfunction has the waveguide property. A 
representation of the solution of these problems for Ix J >> 1 in the form (1.9) is called radiation condition.s. 

Remark 1.2. Since a waveguide function u* (x,y) in free space admits of a representation u.(x, y) =- o(x, y) exp(i~y), 
it follows that ~ may be regarded as the wave number and the function u(x, y) --- u(x, y + 1) as the amplitude. 
Elementary waveguide packets have the form 
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u.(x, y, t) = u(x, y) exp [i(~y - to.t)] 

where co° is the corresponding dimensional waveguide frequency and ~ variesin the half-open intervals ~(-) = 
{~: -re <~ ~ < 0}, =(+1 = {~: 0 < ~ ~ rt}. The propagation direction of the wave packets is determined by the sign 
of ~. 

Sets of waveguide frequencies a(k) = {~(k~(~), ~ ~ =(-~ W =--(+)} (k = 1 . . . . .  K) which are connected 
in the topology of the real axis will henceforth be called transmission bands: to any transmission band 
there corresponds a definite waveguide mode. 

Definition 1.2. An OPS possesses the whispering property if a transmission band at exists such that 
al = (0, ~'1], x ~ ,  O. 

Solutions of problems D(0) = D(~)[~=0, N(0) = N(~)J~=0 and T(0) = T(~)[~=0 satisfy the condition 

u(x, y + 1) = u(x, y) (1.10) 

which corresponds to zero phase shift of the oscillations or describes in-phase oscillations in adjoining 
fundamental domains of the translation group. 

Definition 1.3. Generalized eigenfunctions (eigenfrequencies) of problems D(0), N(0) or T(0) localized 
in a neighbourhood of G will henceforth be called anomalous functions (frequencies) of those problems. 
Anomalous functions describe in-phase oscillations localized around a hard or soft OPS or interface. 
A one-dimensionally periodic structure possesses the anomalous property if a non-trivial anomalous 
function of the corresponding problem exists. 

2. A SOFT SURFACE 

Wave propagation about a soft surface is described by a Dirichlet problem for the wave equation. 
For example, in problems of mechanics a surface is soft if it is free. Characteristic problems involve 
the propagation of longitudinal acoustic waves in an elastic body about the boundaries of the body and 
the propagation of acoustic waves in water about the interface with air. In this section it will be proved 
that a soft surface never has the whispering property, a stop band will be indicated for low frequencies, 
and conditions will be presented under which the surface has neither waveguide nor anomalous 
properties. 

The well posedness of the problem. To establish that the family of problems D(~) is well posed one 
must show that the corresponding inhomogeneous problems are solvable for at least some values of 
the dimensionless frequency. The following proposition may be verified by direct calculation. 

Lemrna 2.1. Green's function for Eq. (1.1) with conditions (1.6) has the form 

n=** exp[i(2r'n + ~)(Y- Yo)- I x -  xo14(21m + ~) 2''- x2 ] 
E(x - xo,Y - Yo, X) = 5'. 

n . . . .  24(2rt n + ~)2 _ X2 

(2.1) 

The choice of a fundamental solution of problem D(~) in the form (2.1) enables potential theory to 
be used to prove that the problem is well posed. Existence theorems have been proved for solutions 
of the inhomogeneous problem D(~), provided the dimensionless frequency is such that the solution 
of the homogeneous problem is unique [8]. 

Modification of  classical relations. To investigate waveguide, anomalous and whispering properties of 
a soft OPS, we need a modification of certain classical identities and inequalities for functions that satisfy 
the phase shift condition for oscillations in adjoining fundamental domains of the translation group. 
Earlier results [9, 10] will be used in part. 

Rellich's inequality. Below we will use the method of [11], modified in [12] for functions satisfying the 
phase shift condition for oscillations in adjoining fundamental domains of the translation group (1.6). 
Let u(x,y) be some solution of problem D(~), and let n be a unit vector along the normal pointing from 
the oscillation domain to the surface G. We have an equality 
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2 2 

J (x + b)(n, ex)~- ~ dG= 2~[. ~'~ dfI (2.2) 
G I *JUl  CI I~"A' f 

where ex is the unit vector of the abscissa axis, and (n, ex) denotes the scalar product. 
This equality (Rellich's equality [11] holds for all solutions of problem D(~) that attenuate at infinity 

along the abscissa axis. 

Friedrichs'inequality. Let g(x,y) be a sufficiently smooth, bounded, real-valued function such that g(x, 
y + 1) -= g(x, y) and g(x, y) ~ O, (x, y) ~ f). Any function u(x, y) satisfying condition (1.6) may be 
represented as u(x, y) = g(x, y) u(x, y). The following inequality [12], usually known as Friedrichs' 
inequality [9], holds for any function u(x,y) that decreases as the distance from a soft boundary increases 

I lu 12 g~ndG-fJ(lu I z g ,~ )dfz  ~< j'j'l Vu 12 dO 
G ~ fl  

(2.3) 

Non-existence of waveguide and anomalous properties of a soft surface. 

Definition 2.1. An OPS is said to be normally illuminated if (n, ex) ~< 0. 

An example of a normally illuminated periodic surface is given in Fig. 1. The reason for the name is that the 
surface is completely illuminated by parallel rays incident upon it along the normal to the direction of periodicity. 

Theorem 2.1. If an OPS is normally illuminated, then it possesses neither the waveguide nor the 
anomalous property. 

Proof. Let u(x,y) be a waveguide or anomalous solution of the homogeneous boundary-value problem 
D. Since the surface is normally illuminated, a b exists such that (x + b) (n, ex) ~< 0 for all points of G. 
By Rellich's equality (2.2), 0u/& -- 0. Since u(x,y) decreases as the distance from G increases, it follows 
that u(x, y) ==- 0 in f~. 

r#J 

Theorem 2.2. Soft surfaces do not possess the whispering property. No waveguide frequencies of a 
soft OPS exist in the half-open interval [0, n). 

Proof. Problem D(~) with additional homogeneous Neumann conditions on a set of straight lines 
R = {x = Rm, m = 1, 2 . . . . .  M} will be denoted by D(N, R). Let ~-NR be either the least eigenvalue of 
that problem or the lowest frequency of the continuous spectrum and let ~.(~) a waveguide or anomalous 
frequency of problem D(~). For all R 

kNR~<X(~) (2.4) 

If R values exist for which 0 < ~ ~< ~.uR, it follows from (2.4) that no waveguide or anomalous 
frequencies of problem D(~) exist in the interval (0, ~). 

Let 

x. = rain (x), x" = min (x) 
(x,y)EG (x,y)~G 

and let the points (x,, y,), (x*, y*) divide the surface G into connected components (Fig. 2). We may 
assume that x, = 0 and that y* are integers. Let g be some connected component of this partition. The 
domain f) ~ {(x, y): x, < x, x*} can be covered by a finite set of rectangles with sides parallel to the 
coordinate axes (Fig. 2), of width 1 + e, e > 0, in the direction of the ordinate axis. We will refer t o  
this cover henceforth as an e-cover. Let {Rm, m = 1, 2 , . . . ,  M} be the coordinates of the vertices of 
the rectangles along the abscissa axis, let P be some rectangle, and let ~.ue be an eigenfrequency of 
problem D restricted to P with homogeneous Neumann conditions on the lateral sides of P. Taking 
g = sin [rc(y -yp)/(1 + e)] in Friedrich's inequality (2.3), where yp is the ordinate of the lower side of 
P, we obtain 
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I"' 
Fig. 2. 

Since P is an arbitrary rectangle in the e-cover, inequality (2.4) becomes n/(1 + ~) <~ ~'NR ~ ~'(~)" Since 
e is an arbitrary number, this implies the assertion of the theorem. 

Remark 2.1. We know of no examples of soft OPSs possessing waveguide or anomalous properties. It may be 
that no such surfaces exist. 

3. A HARD SURFACE 

Typical examples of problems involving a hard OPS are the propagation of acoustic waves over 
impermeable surfaces and the propagation of water waves along the shore line. It can be proved, using 
representation theory for symmetry groups and variational methods, that any hard surface possesses 
the waveguide property and there is always a transmission band in the low frequency domain. The 
physical meaning of this statement is that for acoustic waves there is always a whispering surface effect, 
and for water waves one-dimensionally periodic shore lines are tsunami waveguides. Since tsunamis 
are long waves, they are described even in the linear theory by problem N [13]. 

Variational formulation. Identifying points (x, y) =- (x, y + 1) throughout the oscillation domain f2, 
we obtain a corresponding domai~ f£ on the surface of a cylinder of diameter 1. I fH  1 ( f f )  is the Sobolev 
space for functions defined on ~z, then, by condition (1.6) and Lemma 1.1, the space of admissible 
solutions H~(f2) of problem N(~) has the form 

H~ (tl) -- exp(i~y)H t (f~z) 

Various known.methods [7, 9, 11, 14, 15] may be used for the variational formulation of problem N(~) 
in the space of admissible solutions HI~(~). 

I Existence of the waveguideproperty. Solutions of problem N(~) in the space H~(f2) that describe wave- 
guide or anomalous properties are eigenfunctions of the self-adjoint extension--A~ of the Laplacian, 
and the corresponding eigenvalues belong to the pure point spectrum of -A}v. A special feature in the 
investigation of the waveguide properties of an OPS is that the operator - ~ N  has a continuous spectrum 
Z}v = [~2, oo). The existence of waveguide and anomalous frequencies has been investigated using the 
method known as "Dirichlet-Neumann bracketing" [9, 11, 14, 15]. Suppose that either Dirichlet or 

0 t i c  X 

Fig. 3. 
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Neumann conditions hold on 3' = ((x, y): x = 1/eL 0 < e < ~ (Fig. 3). In what follows we will denote 
problem N(~) with a Dirichlet condition by N(~, e, D) and with a Neumann condition by N(~, e, N). 
Let ~.(k)o~ be the eigenfrequencies of problem N(~, e, D), let k(k)N~ be those of problem N(~, e, N) and 
let ~(k)(~) be an eigenfrequency of problem N(~), with frequencies numbered in increasing order (k = 
1, 2 . . . . .  K). Since the Neumann condition enlarges the space of solutions while the Dirichlet condition 
reduces it, it follows that for all 

O ~  ~.(~ < ~,(*)(~)<~,(~, k = l  ..... K (3.1) 

Remark 3.1. If e and K, exist for which 0 < ~,(~'2 and ~(K*)<Oc ~, then (3.1) implies the existence of at least K~:~ 
waveguide frequencies of problem N(~,) for waves travelling in one direction along the surface. 

Theorem 3.1. A hard OPS possesses the waveguide and whispering properties. 

Proof. As shown in Fig. 3, let 

x ,  = rain (x)  = 0, x ° = max (x)  (3 .2)  
(x,y)EG (x,y)~G 

The eigenfrequencies of problem N(~) are bounded away from zero. Suppose, on the contrary, that 
~.~ = 0 and u ~  = const. If G C {(x, y): Ix [ < 1/e and e < 1/x*, then the fact that the domain f2 t is 
connected (Fig. 3) and condition (1.6) imply that u ~  ¢ const, whence we obtain u~)¢ const; therefore, 
o < 

An upper bound for problem N(~) is obtained by constructing trial functions for the variational 
formulation. Let 

f~! =taC~{(x ,y ) :x°  < x < x ' } ,  ~'22 =taC~{(x ,y) :x*  <x} 

Any solution u(x, y)  of problem N(~) may be expressed as the sum of a discontinuous function ua 
and a continuous function uc 

u = u a +uc; u d = ua (x , y ) e  f t l (Dl) ,  u c = Uc(X,y) ~ Hg(I2F) (3.3) 

where/-)1(f21) is the Sobolev space of functions that vanish on 3' and f2 F is a fundamental domain of 
the translation group in R 2. The function ud(x, y)  may be completed over the whole oscillation domain 
by using condition (1.6). 

Let Uc(X,y) -- exp(i~)  cos(rrxe/2). This function satisfies all relationships of problem N(~, e, D) except 
for the impermeability condition, and it is continuous throughout the space. The function ua may be 
expressed as 

f Itx • o<y<l 
~ 2 l x l  (3.4) 

ud ~0, Ixl>x °, 0 < y < l  

(× is a parameter). The following relationship reflects the variational property of the eigenvalues 

II u 12 da,  = 

(3.5) 

where integration is performed over the domain f2~ = f2 N {(x,y): Ix I < l/e}, and a bar over a symbol 
denotes its complex conjugate. For small e 

~2(~,  •) = ~2 + E(ax + bx  2) + O(~ 2) 

For small e and ×, the number 
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a =  tim J l Ou" l OY l2 df l t  * 0  
~-~- el(I u~ 12 +u~ud + u~u~)d~ 

is well defined. Consequently, for small (positive or negative) ×, we have a < 0, and therefore 
~2(~, 15) < ~2. 

The following proposition may be proved using methods of the theory of self-adjoint operators based 
on the eigenvalue theorem [12, 15]. 

Theorem 3.2. The spectrum of the operator--A~N is discrete below ~2 and contains at most K* and 
at least K. pure point eigenvalues. The numbers K* and K. are defined by the inequalities 

Definition 3.1. A hard OPS of the form shown in Fig. 4 is known as a simple (L-d)-comb. I f d  = 0, 
the surface is called a simple L-comb. 

Using inequalities (3.1) and Theorem 2.2, one can estimate the number of waveguide modes of a 
hard surface in the intervals ~ ~ =_(-) or ~ ~ _(+). If the surface is a simple (L--d)-comb, then by 
Theorem 3.1 there will always be at least one waveguide mode. 

Theorem 3.3. Every simple (L-d)-comb, L > 1/2, has at least Kmi, waveguide modes in the interval 
'~(+) or ~--,(-), gmi n < L + 1/2 <~ Kmi, + 1. If L + 1/2 is not an integer, than gmin is its integral part: 
Kmin = [L + 1/2]. If L + 1/2 is an integer, then Kmin --'- [L - 1/2]. 

Remark 3.2 (The whispering gallery effect). Since the propagation of acoustic waves over hard surfaces is described 
by boundary-value problems for the wave equation with Neumann boundary conditions, the family of problems 
N(~) descries the propagation of elementary acoustic waveguide packets with wavenumber ~ localized about the 
surface. By virtue of the propositions we have proved, for any hard surface a transmission band exists localized in 
the neighbourhood of zero (low frequencies). This means that all OPSs possess the whispering property. Possibly, 
this property of hard surfaces explains the "whispering gallery" effect. 

Remark 3.3 (Tsunami waveguides). Since long waves in shallow water about a shore line are described by problem 
N, our theorems yield a solution of the well-known Lavrent'yev problem on tsunami waveguides [13]. In view of 
the existence of a transmission band for any one-dimensionally periodic coast line in the low-frequency band and 
the fact that a tsunami is a packet of long waves, we can state that any one-dimensionally periodic coast line is a 
tsunami waveguide. 

The anomalous property. If the surface admits of the symmetry group {T1, D~I }, then four iri'educible 
one-dimensional representations (1.8) of this group exist in the solution space. The representations zl 
and x2 conform to the conditions of Theorem 2.1 for ~ = n; for z3 and x4 the conditions of that theorem 
are unsuitable, since ~ = 0. For the representation "c 4 of (1.8) we have the identities 

u(x, y + 1) --- u(x, y), u(x, - y) - -u(x, y) (3.6) 

It can be verified by direct calculation that the space of admissible solutions of problem N(0) in the 
class of  functions satisfying these identities is a closed subspace of H~(fi); the continuous spectrum of 
the operator -A°N in that space has the form EN = [4n 2, +oo). 

Fig. 4. 
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In what follows we use the notation and method of Theorem 2.1. 

Theorem 3.4. A simple (L-d)-comb possesses the anomalous property if 0 ~< d < 1/2. 

Proof. The theorem is true if ko~ < 2rt exists for some e, ko~ being an eigenfrequency of problem 
N(0, c, D) with conditions (3.6)• 

The lower bound is proved indirectly: if )~) = 0, then u~ ) = 0 by (3.6). 
The upper bound Is proved b.y using the vanaUonal property of eigenfrequencies. Putting 

uc(x, y) = sin(2ny) cos(he.x/2), u~(x, y) = 0 

in (3.5), we find that for small 

p.2(~e) ----- 4~ 2 + AE + O(e 2), A = 16L/¢ cos(rid / 2)sin(rid / 2)[1 - 2eos2(ru//2)] < 0 

Theorem 3.5. A hard OPS having the form 

{ L - x  O -  - L , O •  ~ } }  G= ( x , y ) : y = - . . ~ ,  x y u 

, + x  y °  
U i(x, y) : y = - - ~ ,  

in a fundamental domain of the translation group (see Fig. 5) always possess the anomalous property. 
Such an OPS is usually known as an echelette. 

Proof. Suppose that in (3.3) 

u c (x, y) = sin(2/ty) cos(na'~ / 2) 

~'(y - ~)xcos[~c/(2L)], 0 < x < L,0,< y < I 
u a = / 0 ,  x>L, 0 < y < l  

The functions u = ua + Uc satisfies the conditions of problem N(0, ~, D) and (3.6). For small ~, we 
have 

IJ, 2 (X, E) = 41t 2 + E (ax  + b~ 2) + 0 (t: 2) (3.7) 

Since a = 32L (10 - 3rt), this implies, by (3.5), that for small negative × 

!,1. 2 (X, I~) < 4~ 2 (3.8) 

Theorem 3.6. A hard surface of the form G = {(x,y): x = L[1 + cos (2roy]/2} possesses the anomalous 
property for all L > 0. 

Proof. The functions in representation (3.3) may be chosen as 

Y 

qz 

0 L ~: 

Fig. 5. 
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Fig. 8. 

Figure 8 shows the width of the transmission band and the anomalous frequencies as functions of the length of 
the "teeth" of a simple L-comb. The passbands are shown hatched; the solid curves are graphs of the anomolous 
oscillations as a function of the length of teeth of the simple L-comb. A numerical investigation of the passband 
as a function of the geometric parameter of a simple comb was carried out with the help of the dispersion relations 
(3.9). The dependence of anomalous frequencies of a simple L-comb on the geometric parameter L have been 
investigated by direct allowance for the finiteness of the energy [16]. 

4. A P E R M E A B L E  S U R F A C E  

Problem T is not a diffraction problem [17, 18]. If the parameter ~ occurring in (1.4) tends to zero, 
then problem T splits into a problem N in the domain f21 and a problem D in the domain f22, both of 
which have just been investigated. In this section we will use functional-topological methods to show 
that, at small (large) values of x > 0, the waveguide, anomalous and whispering properties of an interface 
differ only slightly from the same properties for the corresponding limiting cases of a surface which is 
soft on one side and hard on the other. 

Operator formulation of the problem. Using Green's function (2.1), we can formulate problem T(~) 
in terms of operators. Let  

El(x, xo,y, yo,k) = E(x-xo,y-yo,kX), E2(x, xo,y, yo,~)= E(X-xo,y-yo,~. ) 

If the solution of problem T(~) in the domains Ol and f2e is sought in the form of single- and double- 
layer potentials 

uk(x'Y)= 5 [Ek(x'y'x°'Y°)~t(x°'Y°)÷ ~Ek(x'y'x°'Y°)['c(2-k)+(k-l)lv(x°'Y°)] ~)n(x0,Y0) 

k = l , 2  

(4.1) 

then conditions (1.5) at the interface take the form presented in [19], r and s are the coordinates of the 
natural parametrization of the interface and p(s) and v(s) are densities of the single- and double-layer 
potentials 
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Lt - ) J 
(4.2) 

Let H = L2(G ) x L2(G ). It can be verified directly that the operator F(~., ×, ~, x) : H ~ H defined 
by the right-hand sides of (4.2) is compact. 

The Riemann surface. The operator F(~,, ~:, ~, T) as a function of ~, is conveniently investigated on 
the Riemann surface of its analytic continuation as a function of ~,. Suppose the numbers 
{I 2nk __. ~ I, (2nk __. ~)/× I}k = 0,1,2... = {[3k}k = 1,2... are indexed in increasing order, and that f(~,) = 
hl.F(~, ×, ~, z)(h2), where hi and h2 are certain elements of H (the asterisk denotes the scalar product 
in H). The construction and properties of the Riemann surface A(~) of the functionf(;L) were described 
in [1, 2]. 

Remark 4.1. The Riemann surface A(~) is infinite-sheeted: the points +- 13k (k = 1, 2 . . . .  ) are second-order 
branch points; for each L e A(~) a natural number K(~,) exists such that for k > K(~,) we have 
Re({(132_ ~2)) > 0. 

Definition 4.1. Suppose that for some ~,* = ~,*(~) ~ A(~) a non-trivial solution of problem T(~) in 
the form (4,1) exists. Then ~,* is called a quasi-eigenfrequency, and the corresponding solution u* is 
called a quasi-eigenfunction of the problem. 

The direction of propagation along the abscissa axis for each propagating mode is determined by 
the signs of  Im ('7([3 2 -  X2)) = Im([3(k, 2)) and Im (4(13 2 - ×2~2)) = im(13(k, 1)). In the general case, quasi- 
eigenfunctions may contain modes propagating in different directions along the abscissa axis. Such quasi- 
eigenfunctions are of interest in themselves. 

Definition 4.2. The quasi-eigenfunctions u* (quasi-eigenfunctions ~,*) of problem T(~) are 
called eigenfunctions (eigenfrequencies) of the problem if u* for Ix I >> 1 has the form (1.9) with 
sign [Im(13(n, 1))] = sign [Im(13(n, 2))] ---" const for all integers n. 

The physical meaning of quasi-eigenfunctions and quasi-eigenfrequencies depends on the content 
of the problem. 

The following proposition is proved indirectly [2, 3]. 

Lemma 4.1. The eigenfrequencies of problem T(~) can only be real. 

The analytical Fredholm theorem. To prove that problem T(~) is well posed, we must prove that it has 
a unique solution for at least some values of X. ~ A(~). Let Ao(~,) = {~.: Rex/(13 2 - ~2) > 0, n = 1, 2 . . . .  } 
be a sheet of the Riemann surface A(~). The following lemma is true [3]. 

Lemma 4.2. If the inhomogeneous problem T(~) for ~, ~ A0, Im ( ;L) ,  0 has a solution, then it is 
unique. 

Lemma 4.2 and Theorem 3.41 of [19] imply the following 

Theorem 4.1. If ~, e A0(~), the inhomogeneous problem T(~) has a unique solution. 
It can be verified by direct calculation that F(~., K, ~,, T) is an analytic function of ~. ~ A(~) and a 

continuous function of T ~ [0, x0] in the strong operator norm (where z0 is an arbitrary positive number). 
By virtue of this fact, and since F(~., •, ~, T) is a compact operator in H, it satisfies the conditions of the 
analytical Fredholm theorem [17] and the following proposition is true. 

Theorem 4.2. The quasi-eigenfrequencies of problem T(~) are discrete on the Riemann surface 
A(~) and depend continuously on x ~ [0, T0] and ~ ~ =-(-) t3 E (+). 

Note that this theorem does not state that quasi-eigenvalues exist--that question requires a special 
investigation. 

If x -~ 0 (x --> +oo), problem T(~) splits into two problems. In the domain ~1, the limiting problem 
describes waves propagating along a hard (soft) surface, while in ~")2 they describe waves propagating 
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along a soft (hard) surface. By Theorem 4.2, the waveguide and anomalous properties of problem T 
for small (large) T are determined by the waveguide and anomalous properties of problems N and D 
in the appropriate domains. 

Waveguide and anomalous properties: the fine structure of the spectrum. The various propositions proved 
above imply the following. 

Theorem 4.3. If 0 < ~ ~ 1 (or 1 ~ x), then a one-dimensionally periodic interface possesses the 
waveguide property. In the interval (0, n/×) (or (0, n)) the waveguide frequencies of problem T are close 
to the corresponding waveguide frequencies of problem N. If G is a normally illuminated surface, then 
the waveguide functions and frequencies of problem T are close to the corresponding waveguide 
functions and frequencies of problem N. 

Remark 4.2. (The whispering interface effect.) By Theorem 4.3, any interface with 0 < x "~ 1 (or 1 "~ x) has a 
passband in the low-frequency domain. 

In the case of an interface of the second type, anomalous oscillations may occur. If Green's function 
(2.1) is modified so as to satisfy identities (3.6), the proof of the next proposition is analogous to that 
of the previous theorems. 

Theorem 4.4. If 0 < z ~ 1 (or 1 ~ ~), then a one-dimensionally periodic interface of the second type 
possesses the anomalous property. In the interval (n/n, 2n/×) (or (n, 2n)) the anomalous frequencies 
of problem T are close to the corresponding anomalous frequencies of problem N. 

The theorems proved above enable us to state that the fine structure of the spectrum of problem T 
for 0 < z ~ 1 (or 1 ~ T) does not differ in the frequency band (0, 2n/×) (or (0, 2n)) from the structure 
of the spectrum of problem N shown in Fig. 6. 

5. C O N C L U S I O N  

Let %, be a waveguide frequency. It follows from (1.9) that the waveguide function decreases as the 
distance from the surfaces increases as exp(-Ix t~/(~ 2 - %2,)). This means that it is exponentially localized 
about the surface. The spatial period of an elementary waveguide packet has the form Y = 2n/~, it varies 
over the interval (2, oo) and is unrelated to the period of the surface. The pass and stop bands do not 
depend on the direction in which the waveguide mode is propagating. The mechanics of wave 
propagation described by waveguide functions along a periodic surface are known [20] and agree with 
the mechanical analogues---oscillator trains. The mechanical analogue of anomalous oscillations are 
in-phase oscillations of a sequence o f  coupled mathematical pendulums. 

The influence of the third dimension on the waveguide and anomalous properties of a OPS may be 
verified by direct calculation [12, 16]. The variables separate, and the investigation of waveguide and 
anomalous properties of a three-dimensional structure reduces to solving the two-dimensional problems 
described above. If ~.. is a waveguide or anomalous frequency of a two-dimensional problem and the 
dependence on the third coordinate has the form exp(ikz), then ~g = ~/(~ 2. + (k))2 is the corresponding 
waveguide or anomalous frequency of the three-dimensional problem. For a waveguide mode, the wave 
vector in this case is (~, k). By Theorem 2,1, we can state that any hard surface of the type described 
has non-trivial waveguide modes for every fixed wave vector. 

The investigations described in this paper enable one to describe resonance phenomena about the 
surface in the case when the source of the oscillations is a periodic function of time. In the problems 
investigated above, there are two types of resonance phenomena. 

Resonance of a spatially localized type is due to the fact that for some waveguide frequencies the group 
velocity of propagation of the waveguide packet is zero [16]. Hence the energy of the source will be 
localized in its neighbourhood. 

Resonance of the synchrocyclotron type is observed when the spatial periodicity of the chain of sources 
and the interface are identical, the waveguide number is equal to the phase shift of the oscillations of 
the sources in different fundamental domains of the translation group, and the waveguide frequency 
is identical with the frequency of the sources. In that case, the amplitude of the travelling waveguide 
packet increases. 
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